Neumann születésének 120. évfordulóján a Neumann Társaság nagyszabású megemlékezés-sorozattal készül. Célunk a neumanni örökség minél szélesebb körű megismertetése.
The John von Neumann Computer Society (Hungarian name: Neumann János Számítógép-tudományi Társaság, abbreviation: NJSZT) looks back to a very long history. It was founded in 1968 as the first professional computer science organisation in Hungary, pioneering this technology that was emerging at that time. Today it is gathering more than 50 professional organisations and cca. 2000 members.
Mission statement
Our mission statement “to act a GPS of the digital world” gives guidance to everybody using information technology today, in the dynamically developing, technology-driven world of the 21st century. NJSZT plays a significant role in promoting digital culture, fostering digital literacy and acting as a catalyst for the ICT profession and the digital world. We are a kind of bridge between ICT professionals and the everyday people using any kind of digital solution. Therefore, NJSZT’s network is very broad, starting from pupils who are going to take an exam like DigCom-ECDL, through teachers and instructors to leading industry experts.
Major activities
NJSZT has four major activities:
fostering digital competency
maintaining professional groups and networking
IT related competitions and talent management
preserving ICT history
ECDL and DigComp
Since 1997 NJSZT has been in charge of coordinating the European Computer Driving Licence (ECDL) program in Hungary with a network of 200 educational and exam centres countrywide. To date, more than 500,000 people have joined the program in Hungary, gaining basic computer proficiency so crucial in today’s labour market. Last year we successfully transformed the exam delivery from contact type where pupils showed up in person to a non-contact manner, managed and controlled remotely by the test managers. It also means that the tests are evaluated automatically by a cloud-based system which was a mutual development of Sophia Testing and Neumann Society.
Beside ECDL, we are active in levering digital competencies for any profession, with special focus on non-technology workers who would meet any IT solution in their jobs.
Professional communities
As a professional organisation, NJSZT is an influential body of the Hungarian IT-sector, hosting successful events and exhibitions, publishing books and providing counselling. NJSZT is also active in areas affecting the future, such as robotics and artificial intelligence (AI). Based on our extensive network, we support quite many initiatives focusing on emerging technologies.
Our communities without claiming completeness:
Artificial Intelligence
Bio-medical Informatics
Forum of Information Technology History
Hungarian Fuzzy Association
Hungarian Association for Image Processing and Pattern Recognition
Multimedia in Education
High Performance Computing
Professional Community for Supporting People with Disabilities
Public Education Special Interest Group
Robotics Division
Section of Talent Care
Web Application Development Division
Talent management
The NJSZT has an extensive and systematically structured talent management network and competition system.
It organises the Bebras competition about computational thinking for all, where ~35,000 students taking part each year.
It offers graphical programming exercises for secondary school students in online and textbook-based learning materials, to motivate them to learn programming through nice pictures drawn by code. Students can test their skills in three rounds of competition (School, county and national), in four age groups (grade 3-4, 5-6, 7-8, 9-12).
In competitive programming, mainly high school students can take part in contest (3 age groups, school, county and national rounds). Preparatory camps are organised for the best students, and they are selected for each Olympiad through a multi-round selection process. We offer an online platform to exercise with more than 2000 tasks. Our team organise online practice contest and online lessons.
The members of the Neumann Society act as team leaders on EGOI (European Girl Olympiads in Informatics), eJOI (European Junior Olympiads in Informatics), CEOI (Central European Olympiads in Informatics), and IOI (International Olympiads in Informatics).
We organised CEOI five times: 1995 - Szeged, 2001 - Zalaegerszeg, 2005 - Sárospatak, 2012 - Tata, 2020 - Nagykanizsa, and IOI in 1996 - Veszprém.
In addition, our regional organisations participate in regional programming competitions, like Prograce, Izsák Competition. For those who will use the office applications, we offer a competition in three rounds and two categories.
In Nyíregyháza the Hungarian Junior Robot Cup is our main activity, while in Szekszárd the Neumann Application and Game Development Contest takes part every year.
Protection of IT heritage
Located in Szeged, at the Albert Szent-Györgyi Agora, NJSZT operates one of the world’s ten most influential IT history museums. The exhibition lets visitors travel through time in technology: they can see computers both from the Cold War era’s former Western and Eastern Blocks. Some of these machines occupy an entire room, while others were specifically designed for home use. Also, ICT and robotics camps and preparatory training for student Olympiads are often being held in the museum.
As can be seen, NJSZT looks back to a very long history. Our society, however, is playing an important role in today’s fast changing world. Promoting the establishment of digital equality, spreading computer literacy and internet culture, improving IT culture, professionalism, the protection of values and talent development to ensure the NJSZT still considers new generations of skilled professionals are tasks of paramount importance. We keep on looking for new opportunities, initiatives and every possible play to keep our place in the Hungarian IT world.
Bodies of the Society
The governing Board of the Society consists of the President, five Vice-Presidents, Supervisory Board, the Managing Director, the Past-President and the Honorary Presidents.
Daily business of the Society is run by the Managing Director.
Támogasd munkánkat!
Te is támogathatod tevékenységünket jelképes 1000 forint átutalásával.
John von Neumann (1903-1957) was one of the most prominent mathematicians of the 20th century. He made major contributions not only to mathematics but also to a number of fields in science such as computer science, physics, economics, meteorology, theory of automata and, last but not least, to game theory. It is no exaggeration to state that whichever scientific field he worked in, what Neumann accomplished in each can be considered a lifetime’s work. Neumann engaged in a wide range of scientific activities, but two of his accomplishments fundamentally changed the world of science and revolutionised advancement in science and technology in the 20th century.
He elaborated the principles that lay the foundation stones for the operation of computers (in a paper written in 1945). These principles, commonly-known as Neumann principles, determine the operation of computers even today.
Neumann principles:
storage and control of a programme and data storage
completely electronic computer
application of the binary system
use of a central processing unit
Today, all information and communication technology devices from desktop computers, laptops or smart phones to industrial applications, without exceptions, are based on the same architecture known as Neumann principles.
Among his innumerous theories in mathematics, outstanding is his famous minimax theorem, which Neumann published in his first monograph on game theory co-authored by O. Morgenstern in 1944. Game theory today is dealt with in the field called operation research. One of the scholars to continue in Neumann's steps was János Harsányi, also Hungarian-born, who was awarded the Nobel Prize in Economic Sciences in 1994 for his contribution to game theory of incomplete information.
The life of John von Neumann (1903-1957) is characterised by two features, a wide range of activities and an intellectual attitude, which are rooted in two profound convictions. First of all, John von Neumann felt a high degree of responsibility to utilise his abilities as best as possible, for that would be the duty of anyone. He was a passionate teacher and researcher, who was convinced that his special abilities obliged him to arrive at significant accomplishments that had a long-lasting impact. As a second driving force, he was aware of the political freedom that surrounded him and enabled him to use his abilities for the benefit of humanity.
What he would leave as legacy to the world interested him in respect to how long the work he had done or the output he had produced would be carried further in the future although, strangely enough, he was not at all certain that the work he had done would interest anyone in a hundred years’ time span. For instance, he assumed that computers would first of all be used for scientific and military purposes. He was greatly engrossed by the role they might play in weather forecast, what's more, in changing the climate. He also assumed that game theory would be made direct use of in decision making related to military purposes or economic considerations (the significance of game theory in economics was acknowledged and awarded the Nobel Prize in 1994). However, the Nobel Prize was not awarded for the theory that lay the foundations, for the creators had long been deceased, but for its application in an extremely important field that covers the analysis of conditions for the equilibrium in non-cooperative games).
Beyond his outstanding scientific accomplishments, John von Neumann represents unique value to Hungary as his discoveries and theories brought fame for Hungary as well as recognition for its education system by the scientific world through his contributions to the scientific life and technological development in the world.
Named after John von Neumann, the John von Neumann Computer Society (NJSZT) undertook the responsibility for the preservation and dissemination of the cultural heritage of the profession, and NJSZT’s numerous activities include relevant tasks in this respect, too. As part of these tasks a collection of items in computer history was established, which was categorised as a museum-type collection. With the interactive display of the most remarkable items from this collection, an exhibition on computer history (www.ajovomultja.hu) was organised, which is comparable to those staged by the world’s leading museums for technology history. A number of completely operational configurations can be found in our museum that are unique in Europe and perhaps in the whole world. The exhibition also presents the life and work of John von Neumann in a hall dedicated to tableaus to illustrate his activities and to relics received from his family, which are on display for the general public for the first time.
Neumann’s daughter, Marina von Neumann Whitman was the honorary guest of the official opening of the exhibition on computer history. During her stay in Hungary she was also received by János Áder, President of Hungary. National commemoration had already been organised on several occasions, for instance, a commemorative stamp (see photo) was issued on the 35th anniversary of Neumann's death or a commemorative year was announced to celebrate the 100th anniversary of his birth. The series of events we organised in the centenary year was attended by his daughter, Marina von Neumann Whitman, who also met prominent members of the Hungarian scientific life and representatives of the Hungarian state.
Preservation of the collection and the organisation, maintenance and further development of our world standard exhibition have required and will continue to require significant financial and intellectual resources from NJSZT. We managed to find a biographic film, presumably the only intact original copy, about John von Neumann. The film was digitalised and can be viewed at the exhibition, and in the future, we would like to have it available with Hungarian subtitles. For the preservation of his intellectual heritage, we are exerting efforts to have John von Neumann's correspondence and related documents, now in the Congress Archives in Washington D.C., brought home to Hungary, processed and presented to the general public.
“The one solid fact is that the difficulties are due to an evolution that, while useful and constructive, is also dangerous. Can we produce the required adjustments with the necessary speed? The most hopeful answer is that the human species has been subjected to similar tests before and seems to have a congenital ability to come through, after varying amounts of trouble. To ask in advance for a complete recipe would be unreasonable. We can specify only the human qualities required: patience, flexibility, intelligence.” (John von Neumann: Can we survive technology?)
John von Neumann was one of the outstanding mathematicians of the first half of the 20th century, but also made contributions to numerous other fields in science. A relatively small part of his work is related to accomplishments that lay the foundations for computer science, however, their implications were immensely significant in creating the technological conditions for the information society. As his most far-reaching piece of work, John von Neumann created the Neumann principles that lay the foundation stones for the operation of today’s computers. Their significance is constituted not only by the fact that all computers, mobile phones and information communication devices today operate on the basis of these principles, but also by his paper (First Draft of a Report on EDVAC) written in 1945, in which he elaborated his principles and made the paper available to the public. He wanted to have his scientific achievement freely accessible and used by anyone, he had no intention to have a patent that is in the possession of a single individual or a limited circle of stakeholders.
Neumann principles:
storage and control of a programme and data storage
completely electronic computer
application of the binary system
use of a central processing unit
John von Neumann’s last work (published after his death) was a detailed comparative analysis of the human brain and the computer. This is a theme that is in the focus of research in information science today. All this indicates that we are to pay respect to John von Neumann not only for being a prominent personality in the past or the father of the principle for the stored programme, but also for being the originator of ideas that are significant in information science even today. Therefore, it can be stated with certainty that John von Neumann represents the past, present and future alike.
A moon crater bears his name. A minor planet (22824) was named von Neumann. Named after him are streets in Budapest and Székesfehérvár, a university faculty and a vocational secondary school in Budapest, and a grammar school in Eger. In 1999 the Financial Times hailed him as “The Man of the Century”.
John von Neumann conducted his secondary school studies at the Lutheran Gymnasium called “Fasori”, which was considered by many to be one of the most prestigious grammar schools in the world at the time. Thanks to such excellent teachers at the school as László Rátz, who taught mathematics or Sándor Mikola, who taught physics, a good number of students, later to work in various countries in the world, brought fame for Hungarian science and education. Former students included Nobel Prize winner physicist, Eugene Wigner or Kálmán Kandó, a pioneer in the development of electric railway.
After the completion of his secondary studies, John von Neumann enrolled in the faculty of arts of the university of sciences in Budapest in 1921, where he studied mathematics as major, and experimental physics and chemistry as minors. Simultaneously with his studies in Budapest, he also enrolled in the University of Berlin in the autumn of 1921, where he studied philosophy, mathematics, physics, and chemistry for three years. In January 1924, he enrolled in the University of Zurich, where he studied industrial chemistry and earned a degree in chemical engineering. He completed his studies at the university of sciences in Budapest on 11 July 1925 and was awarded his doctorate in mathematics with summa cum laude a year later on 12 March 1926.
In 1927 he became a lecturer at the University of Berlin, where he taught for three years while he published papers on set theory, quantum mechanics and algebra, which brought him international reputation and recognition as a mathematician. In 1929 he also taught at the University of Hamburg, then in 1930 he was invited as visiting professor to Princeton University in the United States. In the following year, he was appointed, at the age of 28, as a regular faculty member by the university. Neumann is said to have been the youngest university professor ever appointed in the United States. In 1933, he was honoured by being offered a position on the faculty of Princeton’s Institute for Advanced Study, where he remained as a mathematics professor until his death.
John von Neumann lived and worked in many places in the world, yet he always remained a Hungarian scholar, who received his education as the foundation for his lifetime career at the “Fasori” Lutheran Gymnasium. Through his brilliant scientific accomplishments, Hungarian-born John von Neumann brought fame and recognition for Hungarian science.
The ENIAC computer with John von Neumann in the foreground
In 1945 at the University of Cambridge was developed EDSAC (Electronic Delay Storage Automatic Computer), the first electronic stored-program computer to incorporate the ideas outlined by John von Neumann.
In recognition of his merits, the President of the United States of America appointed him President of the United States Atomic Energy Commission.
In the development of his interests the Hungarian scientist Rudolf Ortvay played an important role, with whom he had extensive correspondence.
Von Neumann recognized that the science of the future will focus mostly on the problems of regulation and control, programming, data processing, communication and organisation. He recognized also that the safety and effectiveness of a system is not so much determined by its elements, but by how elements are organised in system and by the quality and quantity of information going through the elements. John von Neumann saw the direction of further development, but he could not complete his life’s work.
In 1955 he was diagnosed with what was either bone or pancreatic cancer and died a-year-and-a-half later, on the 8th of February 1957 under military security lest he reveal military secrets while heavily medicated. John von Neumann was buried at Princeton Cemetery.
Von Neumann wrote 150 published papers in his life; 60 in pure mathematics, 20 in physics, and 60 in applied mathematics. His last work, written while in the hospital and later published in book form as “The Computer and the Brain”, gives an indication of the direction of his interests at the time of his death.